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Let W be a finite reflection (or Coxeter) group and K: !Ri' --->!Ri. We define the
concept of total positivity for the function K with respect to the group W. For the
case in which W = S". the group of permutations on /I symbols, this notion reduces
to the classical formulation of total positivity. We prove a basic composition for
mula for this generalization of total positivity, and in the case in which W is the
Weyl group for a compact connected Lie group we apply an integral formula of
Harish-Chandra (Amer. J. Math. 79 (1957), 87 120) to construct examples of
totally positive functions. In particular. the function K(x. y) = e", (x, y) E !Ri', is
totally positive with respect to any Weyl group W. As an application of these
results, we derive an FKG-type correlation inequality in the case in which W is the
Weyl group of SOl 5). I 1995 Academic Press. Inc.

I, INTRODUCTION

This paper continues our work on the theory of total positivity and its
connections with noncommutative harmonic analysis. In our earlier papers
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[7, 16], we related the classical notion of total positivity to analysis on the
unitary group U(n). In the theory developed and applied in those papers,
integration over the unitary group became a powerful technique for
proving total positivity. Yet, despite its obvious utility, the appearance of
the unitary group in the study of total positivity seemed an inspired act of
providence. In this paper we broaden the group theoretic context to
include all nonabelian compact Lie groups, to extend the classical concept
of total positivity, and to establish new positivity theorems. From the
standpoint of our prior work, this expanded perspective introduces a
framework relative to which the association of the unitary group to the
classical concept of total positivity is completely natural.

By way of background, we briefly examine the main theme in [7, 16].
Let 9; ~ [R2 and r a positive integer. A function K: 9tJ -> [R is totally positive

of order r [12] if the n x n determinant

K(.I'" tl) K(.I'" t 2) K(SI, til)

det(K(.I';. td) =
K(S2' t l ) K(S2, t 2) K(S2, til)

(1.I )

K(slI' tIl K(slI' t 2) K(s,I' til)

is nonnegative for all n = I, ..., r and for all .1'1 >. . . > .1',. and
t l >· .. >t,. such that (Sj' tdE£0. For the case in which K(x,y)=f(xy)
where.f: [R ...... [R is a real-analytic function, we associated to the function f
a sequence of real-valued functions !/til such that for all n = 1,2, '"

det( K(si' t k )) = Vis) V( t) f !/t,,(usu -I t) duo
lI(lI)

( 1.2)

Here, du denotes Haar measure on U (11) normalized to have total volume
one; .I' = diag(sl' ... , .I'll) and t = diag( t l , ... , til) are diagonal matrices such
that all products Sjtk(j, k = I, ... , n) lie in the domain of f; and
V(s)=DI,,;/<k";II(sj-sd denotes the Vandermonde determinant. It is
then obvious that the function K is totally positive of order r if the func
tions t/J" are nonnegative, n = 1, ... , r. We then applied (1.2) in the case in
which the function f is a classical hypergeometric function. For in that con
text the functions !/t II can be expressed in terms of hypergeometric functions
of matrix argument [6, 7] which, for appropriate values of the parameters
and argument, can be shown to be positive. These results are noteworthy,
not only in regard to the relevancy of the unitary group, but also in that
the theory of hypergeometric functions of matrix argument leads to new
results for classical generalized hypergeometric series.

We turn now to the present work. Let W be a finite reflection group;
that is, a finite subgroup of the orthogonal group. In this paper we define
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the notion of total positivity with respect to W of a function K: ~z -+ ~. To
motivate the definition, let us observe that the symmetric group 6" on n
symbols is an example of a reflection group, that the generalized orthant
{(.I'" ..., .1',,): .1', > ". >s,,} is a fundamental Weyl chamber (cr. (2.2) below)
for 6", and that the determinant in (1.1) may be viewed as an alternating
sum over6w We now make the following general definition: For any finite
reflection group W, we will say that a function K: 1Hz -+ IH is totally
positive with respect to W if an analogous alternating sum over W (given
by (3.1) below) is nonnegative whenever the vectors (.1'" ... ,.1',,) and
(fl' ... , f,,) belong to a fundamental Weyl chamber of W. The connection
between this viewpoint and the results of [7,16] arises in the case in
which W is the Weyl group of a compact Lie group. In this situation, we
apply an integral formula of Harish-Chandra [8] to prove that the func
tion K(x, y) = eX)" on 1H z is totally positive with respect to W. In the
case in which W is the Weyl group of U(n) we recover the proof given
in [7].

Let us briefly indicate how our results lead to new inequalities for totally
positive functions. Consider again, for example, the case in which
K(x, y) = eX", and let

Since K is TPz in the classical sense, 15(.1'1' Sz; t l , tz»O for .1'1 >.1'2' t, > fz.
Now define

If s\>sz>O and t\>tz>O then, by ordinary total positivity, J(SI'SZ;
t l , /z) > 0, J( -.1'], Sz; t" fz) < 0,15(.1'1' -Sz; t" /z) > 0 and J( -.1'1 ,-Sz;
/1' /z)<O. However, we will deduce from Harish-Chandra's formula that
D K(.I'\, .l'z; /1' t z) > 0 for all .I' \ > Sz > 0 and t, > /z > 0, so that we have the
stronger inequality

Of course, (1.3) can be proved by elementary methods; indeed, it is equiv
alent to the fact that sinh x > 0 for x> O. However, by means of alternating
sums over finite reflection groups, we will obtain more general inequalities,
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not only in the case of the function K(x, y) = eXY but also for broader
classes of functions.

We close the introduction by describing the layout of the results to
follow. In order to provide a self-contained treatment of our results, we
present in Section 2 a brief expose of the theory of abstract root systems,
finite reflection groups, and Weyl chambers. In Section 3, we introduce the
alternating sums which generalize the classical determinants, establish
generalizations of two well-known properties of determinants and derive a
generalization of the Binet-Cauchy formula. We give the definition of total
positivity for finite reflection groups and we also derive a basic composition
formula for the new definition of total positivity. Section 4 treats back
ground material on Lie groups and Lie algebras, and Harish-Chandra's
integral formula. In Section 5, we give a detailed statement of Harish
Chandra's formula for the groups of unitary and orthogonal matrices. In
Section 6, we provide numerous examples of totally positive functions. For
the unitary groups, we show that the resulting notion of total positivity
coincides with the classical definition. In the case of the orthogonal groups,
our definition of total positivity can be rewritten as the requirement that
certain alternating sums of determinants are nonnegative.

One of the major applications of the classical theory of total positivity
is to the derivation of correlation inequalities for probability distributions
on W [2,10,13]. Therefore, it is natural to speculate that the new con
cepts of total positivity introduced here should also have similar
probabilistic applications. In Section 7, we briefly recall the classical FKG
correlation inequality on !R". Then we utilize total positivity with respect to
the Weyl group W of SO(5) to derive an analog for W of the FKG
inequality on IR".

Finally, it is with great pleasure that, on the occasion of his sixtieth
birthday, we dedicate this paper to Richard Askey. We do this not only
because of his many kindnesses to us, but also because he has been a true
leader in the art of proving positivity.

2. FINITE REFLECTION GROUPS

We begin with some background material on abstract root systems.
Proofs of our assertions, and the fully developed theory, can be found in
most books on Lie groups and Lie algebras; cf. [3,5,11,15).

Let E be an n-dimensional Euclidean space with inner product (".).
A hyperplane in E is a set of the form P",={vEE:(v,rx)=O},rxEE\{O}.
A reflection in E is an invertible linear transformation a"" leaving pointwise
fixed some hyperplane P '" and sending any vector orthogonal to P '" into its

640'82,'1-5
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negative. Each reflection IS an orthogonal transformation, given by the
formula

2(v, x)
(J(v)=v-~.~-x

.. (x, x)

for all VEE.

2.1. DEFINITION. A subset Ll of the space E is a (reduced) root system if
the following conditions hold:

(R I) Ll is finite, spans E, and 0 f Ll;

(R2) If x, jJ ELl are proportional, then x = /J ora = - jJ;

(R3) If x ELl, the reflection aa leaves Ll invariant;

(R4) Ifa,jJELl,2({J,rx)/(rx,x)E7L.

The elements of L1 are called roots. We will always assume that Ll is
irreducible; that is, Ll cannot be written as a nontrivial disjoint union,
Ll = Ll) U Ll 2 , relative to which every root in Ll[ is orthogonal to every root
in Ll 2 .

Let GL(E) denote the group of all invertible linear transformations of E.
For any root system Ll c E, let W denote the subgroup of GL(E) generated
by the set of reflections {a .. :x ELl}. It follows from property (R3) that W
permutes the set Ll, so that W can be identified with a subgroup of the sym
metric group on the finite set L1. Hence W is a finite group, called the Weyl
(or Coxeter) group of Lt.

A subset 'P of Ll is called a base a/simple roots, or a hase, if 'P is a vector
space basis of E and each root jJ can be written as

(2.1 )
<x E l.J'

where the coefficients k a are either all nonpositive or else all nonnegative
integers. Every root system has a base. Moreover, the number of elements
in a base, which equals the dimension of E, is referred to as the rank of Lt.

If all the coefficients k oc in (2.1) are nonnegative, we say that jJ is a
positive root. The collection of positive roots is denoted by Ll +. A more
abstract approach to defining a system of positive roots is the following.
Let {e\, ..., en} be a fixed basis of E. For vEE, we say that v is positive, and
write v> 0, if v = L;~ J xjej with x I = ... = X k = °and X k + I > 0 for some
k ~ 0. A root a ELlis a positive root if it is positive as a vector in E.

The hyperplanes P oc ' x E Ll, partition E into a finite number of subsets.
The connected components of E\Ua P a are called the Weyl chambers of E.
Each Weyl chamber is an open convex subset of E. If C is a Weyl chamber
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then the walls of C are those subsets C\n P" which have dimension n - l.
Each vector v E E\U"P" belongs to a unique Weyl chamber, denoted by
{£(v). The Weyl group W is the group of permutations of all Weyl cham
bers. Moreover. W acts simply transitively on the set of Weyl chambers;
that is, for any pair of Weyl chambers C I , C 2 , there exists a unique II' E W
such that wC, = C2 •

For a given base '1', the chamber

{£( '1') = {v E E: (v, :x) > 0 for all:x E 'I'} (2.2)

is called the fimdamental Weyl chamber.
From now on, we assume that a base 'I' has been chosen and we denote

the corresponding fundamental Weyl chamber by {£.

2.2. EXAMPLE. Consider the usual n-dimensional Euclidean space [RII,

and let {e l , ... , ell} be the usual standard orthonormal basis of coordinate
vectors. Denote by x=(x1, ...,xlI ) the vectors in [R". Set J={ej-ek:
I ~ j #- k ~ n}. Then J is an abstract root system of rank 11 - I for the
subspace E = {x = (Xl' ... , XII) E [R": XI + ... + XII = O}. A system of positive
roots is J+={e,-e/l~i<j~l1} and a base is '1'= {eJ-ej + l :

l~j~n-1}. A fundamental Weyl chamber is {£={(xl, ... ,xlI)EE:
XI >X2> ... >x lI }. The Weyl group for L1 is:S ll , the symmetric group on
n symbols, so that each Weyl chamber is of the form C = {(XI, ... , x,,) E E:
X",(II>X,,'(21>'" >X"'(III}' where WE':SIl'

In the general classification of irreducible root systems, or their
associated finite reflection groups, this example is a root system of
type A,,_I'

We close this section with some general remarks on root systems. In the
general classification theory, the irreducible finite reflection groups are
categorized as belonging to various types. These types include five infinite
families: A", 11~ I; B II , n~2; CII , n~2; D II , n~4; H;', n~5, n#-6; and
seven additional types, denoted by E6 • E7 , E8 • F4 , G2 • I]. and 14 , Of these,
the root systems of type A,,, BII , C", D,,, E6 , E 7 , E8 , F4 , and G2 are
naturally associated with certain compact Lie groups, as we will outline in
Section 4.

3. TOTAL POSITIVITY

In the sequel, we identify the Euclidean space E with [R". As before,
L1 c!R" is a root system with Weyl group W, and the natural action
of II' E W on t E IR" is by matrix multiplication, denoted w· t. For
t = (t I' ... , til) E !R" and II' E W, we denote by (II' . t)j the jth component of the
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vector »'. t. Further, we denote by det w the determinant of WE W viewed
as a linear transformation on IR", and note that det(w) = ± I since each
WE W is an orthogonal transformation.

The following definition generalizes the alternating sum formula for a
classical determinant.

3,1. DEFINITION, Let £iii S 1R 2 and W be a finite reflection group acting
on IR". For any function K: :?iJ ---+ IR we define

DwK(s, t) = I. (det w) n K(sj' (w· t))
wE"V j=l

(3.1 )

for any s=(s\, ... ,s,,) and t=(t 1 , ... ,t,,) in IRn such that (Sj,(W.t))E:?iJ for
all j = I, ..., nand w E W

For the case in which W = isn' the symmetric group on n symbols, (3.1)
reduces to the classical formula for a determinant. For general W, D w
retains some of the properties of the classical determinant. The following
proposition, for example, generalizes two familiar determinant properties:
(i) If the columns of a determinant are permuted then the sign of the deter
minant changes in accordance with the sign of the permutation. (ii) If two
rows of a determinant are identical then the determinant is identically zero.

3.2. PROPOSITION. (i)If WEW, and s,tEIR", then DIJ.·K(s,w·t)=
(det w) DwK(s, t).

(ii) If t belongs to a wall of a Weyl chamber then D wK(s, t) = O.

Proof (i) Note that W,»·,-I traverses W as w' traverses W Then,
by (3.1)

"
DwK(s,w·t)= L (detw' ) n K(sj,(w'w.t)j)

u/ef.V j=l

"I (det w'w-\) n K(Sj' (w'· t))
w'w-leW j=l

n

=(det»,-I) I. (detw') n K(Sj,(w'·tj)
l1"E HI' j= 1

= (det W-I) DwK(s, t)

= (det w) DwK(s, t)

where the last equality holds since w is an orthogonal transformation.
(ii) If t belongs to a wall of a Weyl chamber then there is a reflection

(J" E W that leaves this wall fixed pointwise. Since (J" is a reflection,
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det(a"j = -1. Therefore DwK(s, t) = DwK(s, a,,' t) = det(a,,) DwK(s, t) =
-DwK(s, t), so DwK(s, t) = O.

3.3. DEFINITION. Let (£ be the fundamental Weyl chamber. A function
K: ~ -+ [R is totally positive with respect to the group W if

(3.2)

for any S=(SI""'S,,) and t=(t., ... ,t,,) in (£ such that (Sj,(W.t))E~ for
all j = 1, ..., n and all WE W. If (3.2) is strictly positive for all s, t E (£ then
we say that K is strictly totally positive with respect to W.

We remark in passing that for a given subset ~ of [R2 it is possible, even
in the classical case in which W = 6" and D wK is the classical determinant,
that the domain of D».K is the empty set. We will assume throughout that
[i! is such that this pathology does not occur.

Proposition 3.2 describes two properties of classical determinants that
are common to D w for all finite reflection groups W. On the other hand,
the invariance of the classical determinant under the interchange of rows
and columns does not necessarily extend to finite reflection groups in
general. For that reason, we make the following definition.

3.4 DEFINITION. We say that the function K is W-symmetric if whenever
DwKis defined at (s, t) it is also defined at (w·s, t) for all WE W, and

DwK(s, w· t)=D»..K(w·s, t).

We will also say that a nonnegative Borel measure fJ. on [R is invariant
under W if the product measure dfJ.(sl)···dfJ.(s,,), s=(sl, ...,S,,)EIR", is
invariant under the action of Won [R". Examples of W-invariant measures
are Lebesgue measure and the Gaussian measure dfJ.(x) = exp( _x2

) dx.
These measures are W-invariant since the resulting product measures on [R"

are invariant under all orthogonal transformations.
We next generalize the basic composition formula [12, p. 17] to the

setting of finite reflection groups.

3.5. THEOREM. Let Land M be W-symmetric on [R2. Suppose that both
Land M are totally positive with respect to W, let fJ. be a W-invariant
measure on ~, and define

K(x, y) = t L(x, z) M(z, y) dfJ.(z) (3.3 )

for (x, y) E [R2, whenever the integral (3.3) converges absolutely. Then K is
W-symmetric and totally positive.
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Proof By definition, for S=(SI' ... , s,,) and t=(tl' ... , t,,),

"
DwK(s, t) = L: (det 11') TI K(sj' (II" t);)

w j~ 1

= L: (det 11') fI J L(sj':) M(::j' (II" t)) dJl(::).
w j~ I IR

Interchanging the sum and integral, and recalling the definition of D wM,

we obtain

DwK(s, t) = t, lj01 L(sj' ::j)J DwM((, t)
j
01 dJl(::j)

where (=(::1'''''::'')' Since DwM((,t)=O if( belongs to the wall P~ ofa
Weyl chamber (Proposition 3.2 (ii)), (3.4) reduces to

Writing 1R"\U~ P~ as a disjoint union of Weyl chambers,

\
IR" \, UP" = U IV· (£:

\ ex H'E U·

we obtain

DwK(s, t) = "~')'E" (f ljDI L(sj'::)1DwM((, t) ,DI dJl(::j)

= L: f . ..rrJTI_"]L(,\>(w'Oj)lD,vM(H,·(,t)JTI~"]dJl((W'O).
H'EH' W"(,.EH "l-l - J

Since DwM(w·(, t) = Dw··M((, w·t) = (det )1')D w M((, t) and TI7~1 dJl((w,O)
= n7~ 1dJl(::j)' we obtain .

r " 1 "
Dw·K(s,t)= tl ~(detw)}]1 L(sj,(w'(UJ DwM((, t))]] dJl(::)

= f DwL(s, 0 DwM((, t) IT dJl(::J
(f j=1

It is now evident that if Land Mare W-symmetric and totally positive
with respect to W, then K is also W-symmetric and totally positive with
respect to W.
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3.6. Remarks. (a) The last equation above,
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DwK(s, t) = JDWL(s, () DwM((, t) fI df.1(:::) (3.5)
li j~1

is a generalization for finite reflection groups of the classical Binet-Cauchy
formula. Indeed, (3.5) is representative of a general group-theoretic con
struction. If one replaces the determinant in (3.1) by anyone-dimensional
representation X of W then (3.1) becomes

Dw.xK(s, t) = L X(w) n K(sj' (11" t)J
WE ,,- j= I

The function D w. x satisfies the x-covariance property,

Dw.xK(s, lI'·t)=X(w)Dw.xK(s, I)

for .1', t E [R" and 11' E W, and the corresponding Binet-Cauchy formula

Dw,xK(s, t) = f Dw.xL(s, () Dw,x M ((, t) fI df.1(::) (3.6)
li j~1

holds, where K is given by (3.3). In particular, for X =- I, (3.6) generalizes
the Binet-Cauchy formula for the permanent. Observations similar to these
have been made by Karlin and Rinott [14] and Stembridge [17] in their
generalizations of the Binet-Cauchy formula.

(b) The hypotheses of Theorem 3.5 can be relaxed as follows: Sup
pose L is defined on 92L =92, x !:z!2 and M is defined on EtA! =922 x r;t, where
0'i" 0"2 and~, are subsets of [R. Denote by92jll the Cartesian product
0"2 x .. ·0'i2 (n factors), and assume that the subset fiJi" I of [R" is invariant
under W. Theorem 3.5 now holds with 9 2 as the domain of integration in
(3.3) and fj:~') n l£ as the domain of integration in (3.5),

4. A FORMULA OF HARISH-CHANDRA

We now turn our attention to an integral formula of Harish-Chandra from
which we will generate examples of totally positive functions for certain
finite reflection groups Joll.

By way of motivation for this formula, we first review the proof in [7]
that the function K(x, y) = en on [R2 is totally positive in the classical
sense. For this function K, formula (1.2) takes the form

Vis) Viti f elf/t.nt-II du = p" det(e'rlk)
U(n)

(4.1 )
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Pn = n (j -I)!
i~ 1

(4.2)

By expressing det(e'J'k) as an alternating sum over the symmetric group 6",
we can rewrite (4.1) in the form

" () <~ ·,1'>

I <Adlu) sit> d = R ,,"-WEIf>.e w ee u 1-'11
Uin) V(s) V(t)

(4.3 )

where Ad(u)·s=usu- 1 is the adjoint action of uEU(n) on s=
diag(sl' ..., sn); e(w) is the sign of the permutation loV; (sIt) =tr(st); and
w.s=diag(s"'ll), ... ,SW(II))' It follows immediately from (4.3) that the
alternating sum on the right-hand side of (4.3) is positive for all s, t.
Equivalently, the function K(x, y) = eXY on ~2 is totally positive in the
classical sense.

As we now explain, (4.3) is a special case of Harish-Chandra's formula
for compact Lie groups. Since we do not assume that the reader is familiar
with Lie theory, we will provide enough background to understand the
ingredients in the formula. For a complete treatment of the structure theory
of compact Lie groups-and especially the interplay of compact groups
and root systems-the reader should consult a reference on Lie groups, for
instance, [3, 9, 15, 18].

Let U be a compact connected Lie group. Without loss of generality U
can be taken to be a closed, bounded, and connected subgroup of the
general linear group GL(N, q of complex nonsingular Nx N matrices, for
some value of N. Denote by eN x N the space of complex N x N matrices. A
Lie algebra can then be thought of as a subspace of C Nx

N that is closed
under commutators [X, Y] = XY - yx. The Lie algebra is real or complex
according to whether it is closed under real or complex scalars, respec
tively. In particular, the Lie algebra u of U is the collection of all N x N
matrices X such that

IS In U for all t E R The exponential map X f-+ eX, while not one-to-one,
maps u onto U.

Given u E U we define the linear transformation Ad( u) on u by

Ad(u). y=uyu- 1 (4.4 )
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for Y Eu. The mapping U I-> Ad(u) is called the adjoint representation of V.
Correspondingly, the formula

ad(X) Y= [X, Y] (4.5)

for X, Y E U defines a linear transformation ad(X) on u, and the mapping
X I-> ad( X) is called the adjoint representation of u. The representations ad
of u and Ad of V are related by the formula

for all X EU and t E IR.
Define the complex vector space 9 by

(4.6)

where i = J=1. Then 9 is a complex Lie algebra called the complexifica
tion of u. For each u E V, formula (4.4) makes sense for Y Eg, Ad( u)
becomes a linear transformation on g, and the mapping U I-> Ad( u)
becomes the adjoint representation of V acting on g. Similarly, formula
(4.5) is defined for X, Y Eg, and the mapping X I-> ad( X) becomes the
adjoint representation of g.

A Lie algebra is simple if it has no nontrivial ideals, is semisimple if it is
the direct sum of its simple ideals, and is reductive if it is the direct sum of
its center and a semisimple ideal. Correspondingly, a Lie group is simple,
semisimple, or reductive if its Lie algebra is simple, semisimple, or reduc
tive, respectively.

A compact Lie group V is always reductive. Indeed, its Lie algebra u is
the direct sum of the center 3 and the semisimple ideal [u, u] generated by
all commutators. At the Lie group level, this splitting translates into the
following: There exists a semisimple subgroup Va of V such that each U E V
can be written

U=ZUa (4.7)

where Z EZ, the center of V, and UaE Va. For example, the unitary group
U(n) has a one-dimensional center consisting of the scalar multiples e;oI
where I is the identity matrix, and so U(n) is reductive; the special unitary
group SU(n), consisting of those unitary matrices having determinant I, is
simple; and SU(n) is the semisimple (in this case simple) part of Urn).
Thus, the general element U of U(n) is of the form u = eiOua where
uaESU(n) and OE[O,2n).

A connected abelian subgroup of a compact Lie group V is called a
torus. Central to the structure theory for compact Lie groups is the
existence, and uniqueness up to isomorphism, of a maximal such subgroup.
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Thus, let T cUbe a maximal torus of U, which is necessarily isomorphic
to a product of one-dimensional unitary groups U( I). Then T is a maximal
Abelian subgroup of U, and its Lie algebra t is a maximal Abelian sub
algebra of u. Denote by to the semisimple part of t. That is, t = 3EB to where
3 is the center of II and to = t n [ll, ll].

Let I) = t + it be the complexification of t. Then I) is a maximal abelian
subalgebra of g, the Cartan subalgebra, such that the linear transformations
ad( H) for HE I) are simultaneously diagonalizable. Let 1)* denote the dual
space of I). For ex. E I) * we set

g~ = {XE g: [H, X] = ex.(H) X for all HE I)}.

If g~ is nonzero we say that ex. is a root of 9 with respect to I) and that g~

is the corresponding root space. We denote the set of roots by LJ. Then each
root space is one-dimensional, gO = I), and 9 decomposes as

(4.8)

Equation (4.8) is called the root space decomposition of g.
The next element of structure is the existence of a non-degenerate com

plex bilinear form <·1· > on 9 which is g-invariant in the sense that
<[X, Y] IZ> = - <YI [X, Z] >for all X, Y, Z E g. From the invariance and
the root space decomposition, it follows that the restriction of this form to
I) is non-degenerate. Moreover, the restriction of this form to the real sub
space it of !) is an inner product on it. In particular, for each ex. E LJ there
exists a unique element H ~ E i to such that ex.( H) = <H IH ~>for all HE it.

For our purposes, what is most crucial is the following. If we lift the
inner product from ito to the dual space it(f, then E= itti' becomes a
Euclidean space in which the subset LJ of roots is an abstract root system
in the sense of Definition 2.1, and the theory described in Section 2 may be
applied. The Weyl group W for this root system is called the Weyl group
of the compact group U. In particular, we choose an ordering for the roots,
specify a system LJ + of positive roots, and define a fundamental Weyl
chamber <£.

Now we can state Harish-Chandra's formula.

4.1. THEOREM (Harish-Chandra ). For H" H 2 E !)

" (d t ,) <..·.H'I",>
f (Adlu)·f{,III,> I -fJ . L,wEW e 11 ee (u- IV

u V(H,) V(H2 )
(4.9)
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where fJ w is a positive constant, and

V(H) = n rx(H)
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for any HE I).

Note that there is no loss of generality if in formula (4.9) we take U to
be semisimple. The reason is as follows: For any ~ E Z, Ad(~) is the identity.
Thus if we write liE U according to (4.7) as ll=~lIo then Ad(ll)=

Ad(~) Ad(uo) = Ad(uo )' In this way we can replace the integration over U
in (4.9) by integration over Uo and all that changes is the value of the con
stant fJ w· We also remark that the constant fJ w can be computed explicitly
by several methods. However for our purposes it is sufficient to know that
fJ w is positive.

For a proof of Theorem 4.1, we refer the reader to Harish-Chandra's
original paper [8, Theorem 2, p. 104] or Helgason [9, p. 329].

5. THE UNITARY AND ORTHOGONAL GROUPS

In this section, we make Theorem 4.1 explicit both for the unitary groups
U( n) and the special orthogonal groups SOl n).

5.1. The Unitary Croups. From the remarks at the end of the preceding
section it suffices to consider the subgroup SU(n) rather than U(n) itself.
Since SU( I) reduces to the identity, we assume that n;:' 2. Therefore, we set
U=SU(n), and note that its Lie algebra is u=su(n), the Lie algebra of all
n x n complex skew-Hermitian matrices with trace zero.

The complexification of u is 9 = sl(n, C), the Lie algebra of all/1 x /1 com
plex matrices with trace zero, on which an invariant bilinear form is given
by <X I y) = tr( XY) for X, Y E g. As maximal torus T in U we take the
subgroup of diagonal matrices diag(e,ol, ... , eilln

) where 8" ..., 0IlE IR and
0 1 + '" + 0" = O. Then the Lie algebra t of T consists of all diagonal
matrices diag( iO I' ... , iOf{) with OJ + .. , + Of{ = 0; to = t; and the Cartan
subalgebra I) of 9 consists of all diagonal 11 x n complex matrices
H = diag(h), ... , h,,) such that hI + ... + h" = O.

Define the linear functional ej on I) bye)H) = hi' where H = diag(h I' ..., hf{)'
Also let Ejk be the n x 11 matrix with 1 in the (j, k)th position and 0 elsewhere.
Then the linear functional rx = e j - eb) =1= k, is a root of 9 with respect to I), the
corresponding root space is g~ = CE jk , and these linear functionals rx exhaust all
of the roots. That is, A = {ej - ek: 1 :() =1= k :( 11 }. If we identify the linear func
tionals el' ... , ell with the standard basis of 1Rf{, then L1 is precisely the root system
encountered earlier in Example 2.2 and Harish-Chandra's formula (4.9) for
SU(I1) (or equivalently U(n» is precisely (4.3).
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5.2. The Orthogonal Groups. We next examine Harish-Chandra's for
mula for the orthogonal group O( N) of real N x N matrices u such that
uu' = 1. Since in Theorem 4.1 we require a compact group to be connected,
we restrict attention to the special orthogonal subgroup SO( N), consisting
of those orthogonal matrices having determinant one. Since the group
SO(2) is abelian, we assume that N?: 3.

Let U = SO( N). The Lie algebra of U is U= 50(N), the Lie algebra of all
N x N real skew-symmetric matrices with trace zero. The complexification
of U is 9 = 50(N, C), the Lie algebra of all N x N complex skew-symmetric
matrices with trace zero. An invariant bilinear form on 9 is given by
(X I y) = tr(XY).

We remark in passing that the Lie algebras 50(3) and 5u(2) are
isomorphic, as are the pairs 50(4) and 5U( 2) x 5U( 2) as well as 50(6) and
5U( 3). In each case the corresponding compact groups are locally
isomorphic, and locally isomorphic groups give rise to the same notion of
total positivity. In what follows we consider the cases N even and N odd
separately.

5.3. The Group SO(N), N = 2n Even. For the maximal torus T in
U = SO(2n) we take the group of all 2n x 2n block-diagonal matrices of the
form

where (J" .•. , On E IR. Then the Cartan subalgebra ~ in 9 is the complex Lie
algebra of all 2n x 2n complex block-diagonal matrices of the form

H=

where hI' ...,hnEC

o hn

-hn 0

(5.1 )
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As in the case of the unitary groups, we could write out the root space
decomposition in detail; but since the computations, although routine,
are somewhat more lengthy than in the unitary case, we refer the inter
ested reader to Knapp [15, Ch.4, p.60 if). We will write down the
root system, the Weyl group, and the fundamental Weyl chamber as
follows.

Let {e I' ... , en} be the standard basis for W. A root system for SO(2n)
is L1 = {± ej ± ek: 1~j < k ~ n}. In the general classification for root
systems, L1 is a root system of type Dn-

A system of positive roots for SO(2n) is L1 + = {ej ± ek: 1 ~j <
k~n}. For a:=ej ±ek EL1+ and H of the form (5.1), a:(H)=hj±hk so
that

V(H)= n (hj-hk)(hj+h k)= n (hJ-h~).
t ~j<k~n I ~j<k~n

Also, a fundamental Weyl chamber is (£ = {(hI' ... , hll ) E W: hI > hz > ... >
hll_I>/hnl}·

Let G(n) denote the group of permutations w of the set
{-n, ..., -1, l, ...,n} for which w(-j)= -w(j). If we let h1, ...,hn be n
symbols and define h_j = -hj' j= I, ..., n, then G(n) acts on the set of
symbols {h_n, ...,h_1,h1, ...,hn} by

The Weyl group of SO(2n) is SG(n), the subgroup of G(n) consisting of
even permutations [3, p. 171]. Put more simply, SG(n) is the group
generated by the permutation group 6 n together with an even number of
sign changes.

The action of G( n) carries over in a natural way to the Lie algebra I).
Let

so that the matrix H in (5.3) may be written as the direct sum

Then the action of G(n) on I) is given by

(5.2)

for »' E G(n) and HE I).
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With the above ingredients now in place, Harish-Chandra's formula
for SO(2n) is as follows: If HI = hl,l b(J)hl,2b(J) ". tBh,."b and H 2 =

h2 . I b (J) huh (J) ,., tB h2 . JIb, then

" (d t ,) ,<'" lI,IH,>

f tr(uHlU-lH,ld -13 L.."'ESGI") e H t
e u - SG(n)

SOl2nl V( HI) V( H 2 )

_ L"'ESG(n) (det w) exp(2 Lj'~ I w(h ,.j ) h 2• j )

- f3SG(/I) n (1 2 h2 )(1 2 1 2 )
I';;j<k~n ll.j- l,k 12. j - 12• k

and the value of the constant [JSGln) can be calculated to be

2n -1

PSGinl = (2n - I)! TI (2) - I)!
j~ I

5.4. The Group SO(N), N = 2n + I odd. Now let U = SO(2n + I). A
maximal torus for U is the group T of all (2n + I) x (2n + I) block-diagonal
matrices of the form

cos 0 1

-sin 0 1

sin 0,

cos 0 I

cos 0"

-sin (1/1
sin 0/1

cos On

where °1 , ... , On E IR. The complexification !) of t is the Lie algebra of all
(2n + I) x (2n + I) block-diagonal matrices of the form

H=

o

(5.3)

where hI' ... , h/l E Co A root system for SO(2n + I) is
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and a system of positive roots is

L1 + = { eJ ± ek: I :0;;) < k :0;; n} u {e/ 1 :0;;):0;; n}.

For aEL1+ and H of the form (5.3)
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Then

{
h) + hk

a(H) = h-
1

if a = ej±ek

if ex =er

V(H) = TI (h] - h~) TI hj'
l~j<k~" )=1

Moreover, a fundamental Weyl chamber is (£ = {(hI' ..., I1 n ) E 1R":
h, > ... >hn >O}.

The Weyl group of SOl 2n + 1) is W = G( n), the reflection group
described earlier, and the action of G(n) on the Lie algebra ~, in analogy
with (5.2), is given by

for H of the form (5.3). Then, Harish-Chandra's formula for SOl 2n + 1) is
as follows: If H\=hl.lbtBh1,2b(fJ .. ·tBh 1• n b(fJO and H 2 =h2,lbtB
h2.2b tB ... tB h2,,,b (fJ 0, then

f e,r(u1l1u-lll,) du
SO(211 + 1)

'" (detw)e<lI'lllIH,)
fl i...JwEG(n)

= G(n) V(Hd V(H
2

)

_ fl LWEGill) (det 11') exp(2 L,I= 1 w(hl,) h2.)

- Gin) TIl ~)<k~n (hL-hi.k)(h~,) -hL) n;~ I h l .)h 2.)

and the constant flG,nl is

II 4n - 1

fiGI,,) = TI (2) -I)! TI )!
)= 1 )~211

6. EXAMPLES OF TOTALLY POSrTlVE FVNcTroNs

Using Harish~Chandra's formula, we obtain the first example of a
function that is totally positive function with respect to W.
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6.1. THEOREM. Suppose that W is the Weyl group for a compact Lie
group U. Then the function K(x, y) = eXY

, (x, y) E 1R 2, is strictly totally
positive with respect to W.

Proof With notation as in Section 4, suppose that the rank of the root
system L1 is n. Then the real vector space ito has dimension n, and relative
to a choice of basis we can identify ito with IR n. Thus, we identify elements
HI and H 2 of ito with the vectors s = (Sl> ... , sn) and t = (t l' ... , tn), respec
tively, in IRn. Now suppose sand t are in the fundamental Weyl chamber
<£. By Harish-Chandra's theorem and the definition of D wK, we have

n

DwK(s, t) = L (det w) n e(w'VJ
H-'E U" j= 1

H'E J-V

=Pv/ V(H I ) V(H2 ) Iv e(Ad(u)HII H2> duo

Since s, t E <£, it follows from the definition of V( H) that V(H]) > 0,
V(H2 ) > O. Also, e(Ad(li)' HI I H2> > 0, since <Ad(u) . HI I H 2 ) is real for all
u E U. Hence D wK(s, t) > 0 for all s, t E <£, which is the statement that K is
strictly totally positive with respect to W.

If W is the Weyl group of the compact Lie group U and the function
K: 1R2~ IR is totally positive with respect to W then we will simply say that
K is totally positive with respect to U. Thus, a function K is totally positive
of order r in the classical sense if and only if K is totally positive with
respect to all the groups UO), U(2), ... , U(r).

We now construct examples of functions that are totally positive with respect
to the special orthogonal groups. In the case in which U = SO( 2n + 1), recall that
the elements of the Weyl group W = G(n) can be viewed as permutations of the
set {I, ... , n} together with up to n possible sign changes. Therefore, each WE W
is of the form w = ur, where a E 6 n is a permutation on n symbols, c. = (c.j, ..., c.n )

with c.j = ± 1 for allj = I, ..., n, and w = C.a acts on s = (s], ..., sn) E IR" by w· s =

(c.] s"(1)' ..., C.ns,,(n»)' Writing out the sum in (3.1) with W = G(n), we have

DwK(s, t)

L (fI c.j ) L (det a) IT K(sj' c."C) taC)
e,=±l'H.. e,.=±l J=l GE6n J=l

K(sl,o]td K(S],02t2)

K(S2, C.I td K(S2,02t2)

K(s],ontn)

K(S2,On tn)

(6.1 )
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Thus, the function K is totally positive with respect to SO( 2n + I) if (6.1 )
is nonnegative for all Sl > ... > Sn > 0 and t I> ... > t n > O.

As an example, substituting K(x, y) = eXY
, x, y E IR, in (6.1), we obtain

"
DwK(s, t) = I det(a) I n GjeS"IJIF./}

..,. E Sn .q = .±. L .... l:n = ± 1 j = 1

"
= I (det a) TI (e,""!}I') - e'm ii")

aE G n j= I

= det( e"','k - e "'J'k)

= 2n det(sinh( Sj td).

Therefore, the strict total positivity of K with respect to SO(2n + I) is
equivalent to the well-known result that the function L(x, y) = sinh (xy),
x, y E IR+, is strictly totally positive in the classical sense [12]. In the case
in which n = 2 the strict total positivity of K with respect to SOt 5), as
expressed through the positivity of (6.2), reduces to the inequality (1.3).

Let~ denote the class of even functions K: 1R 2 -> IR; that is, K( - x, - y) =
K(x, y). If K E .~~ then it follows from (6.1 ) that D Jof.K(s, IV' t) = DwK( IV· S, t)
for all IV E G(n) and s, t E W; that is, K is W-symmetric in the sense of
Definition 3.4.

Let f1 be a positive Borel measure on IR. Then we can show that f1 is
G( n )-invariant if and only if f1 is even; that is, df1( -:) = df1(:). To prove
this, note that f1 is G(n )-invariant if and only if

for any II' E G( n) and any Borel set A c IR". Choosing A to be a Cartesian
product of intervals, it follows that f1( I) = f1( -I) for any interval Ie R
Hence, df1( -z) =df1(z).

We conclude from the above remarks that the basic composition for
mula, Theorem 3.5, holds in the case of SO(2n + I) for all L, M E~ and
any even measure f1 such that the integral in (3.3) converges absolutely.

6.2. EXAMPLE. Let.@ = {(x, y) E 1R2: Ix + yl < 1} and K:'@ -> IR where
K(x,y)=[I-(x+y)2J- 1

. Then K is totally positive with respect to
SO(2n + I).

Proof This follows from the basic composition formula with L( x, y) =

M(x, y) = en and df1(x) = ~e-ixi dx.

Note that K is also totally positive with respect to U(n), that is, TP n in
the classical sense. This holds since L, M are totally positive with respect
to U(n) and since any positive Borel measure f1 is G,,-invariant.

640/82/1-6
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6.3. Remarks. Suppose that K is totally positive with respect to
SOt 2n + I), and f, g: IR -+ IR + are arbitrary functions. Then the function
K(x, y) = I( Ixl) g( Iyl) K(x, y) is also totally positive with respect to
SOl 2n + I). This result follows directly from (6.1).

In particular, by choosing K(x, y) = eZx
" I(x) = g(x) = exp(xz), we

deduce that the function K(x,y)=exp((x+y)2), (X,Y)EIR 2, is totally
positive with respect to SOl 2n + I).

Next we turn to the case in which U = SO(2n). Now the Weyl group
becomes W = SG(I1), which we view as the group of permutations of the set
{ I, ..., 11} together with an even number of sign changes. The parity of the
number of sign changes can be characterized by the constraint
GI I: z ... G" = I. In analogy to (6.1) we have

DwK(s, t)

"I I (det 0') IT K(s;, f:"lilt"IJj)
q = ± 1, ... , 1-:/1 = J:.. 1 (J' E z'n j = 1

1:1- ':/1=1

K(SI,f:1tIl K(s"f:zt z)

K(sz, l:) t,) K(sz, Gztz)

E!=±l, .... I:,,=±1

"1 ",,~I K(S",f:)t l ) K(s",Gzt z)

K(SI' f:"t,,)

K(.\'z, f:"t,,)

K(sn' [-;", In)

(6.3)

In the case in which K(x, y) = e'Y for x, y E R we may proceed III a
manner similar to (6.2) to obtain

DwK(s, t) = 2" 1 [det(cosh(sjtd) + det(sinh('\'/k))].

Then D wK(s, t) is positive for all SI> ... > s" _) > Is" I and t) > .,. >
t,,_) > It"l.

We now exhibit a function which is totally positive with respect to all
V( n) but not totally positive with respect to SOt 4). This makes it clear that
total positivity with respect to V( n) is not the same notion as total
positivity for other compact Lie groups.

6.4. EXAMPLES. (1) Let K(x,y)=(1-xy)-l, Ixyl<l. It is known
[7, 12] that K is totally positive with respect to V(n). We prove that K is
totally positive with respect to SOt 5) but not totally positive with respect
to SO(4).
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Recall that a fundamental Weyl chamber for SO(4) is {(s"sz):
Sl> ISzl >O}. By means ofa straightforward calculation using (6.3) we find
that for .I' = (s, , sz) and t = (t I' t z).

(I-S!t~)II·
(1-.I'2t~)-1

Therefore, K is totally positive with respect to SOl 4 ) if and only if the func
tion L(x,y)=(I_xZyZ)-'. IxYI < 1. is TP z (that is, totally positive with
respect to V( 2)).

To prove that L is not TPz• we proceed as follows. Recall that a positive
function L is TP 2 if and only if the function f(x)=L(x'Yl)/L(x,Y2) is
monotone increasing whenever Y, > Y2 (this is simply an alternative way of
stating that L(x" YI )/L(x l • Y2) ~ L(xz•Yl )/L(x2, Y2) for XI> X z and
Y I > Yz)· Here, we have f( x) = (I - x 2yi) , (I - x2y~), so that

Therefore (log f(x))' < 0, hence 1'(x) < 0, for X < 0, and we conclude that
K is not totally positive with respect to SOt 4 ).

In the case of SOt 5), a calculation using (6.1) yields

Since a fundamental Weyl chamber for SO(5) is {(.I'I'SZ):S,>sz>O},
proceeding as in the case of SOl 4) we find that K is totally positive with
respect to SOl 5).

(2) The difference between total positivity with respect to SOl 4) and
SOl 5) is only one instance of the difference between total positivity with
respect to the even and odd order orthogonal groups. We shall prove that
the function K( x, Y) = sinh( xY) is not totally positive with respect to any
SOl 2n). Starting with (6.3), and noting that sinh( EX) = E sinh x for E = ± I,
we see that in the case of SOt 2n)

DwK(s, t)=
q= ±l, .... E:. n = ±1

1:\ 1:,.= I

= 2" - I det( sinh( s;l)).

It was proved earlier that the function K is totally positive with respect to
SOl 2n + I ); that is, this last determinant is positive whenever
.1'1> ... >.1'11> ° and t 1 > '" > til> 0. Consequently the determinant is
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always negative if SI > ... > s" ~ [ > 0 > s" and t I> .. , > tIl > O. Therefore,
DwK(s, t) attains negative values on the fundamental region Sl> ... >
s" [>ls,,1 and t l > ... >t" .. [>lt"l, and K is not totally positive with
respect to SOt 2n).

At this stage, all our examples have been of functions which are totally
positive with respect to Weyl groups of compact Lie groups. It remains to
construct examples of functions which are totally positive with respect to
irreducible finite reflection groups other than Weyl groups of compact Lie
groups. From the classification theory described at the end of Section 2, we
find that this problem asks for examples of functions that are totally
positive with respect to finite reflection groups of type H~ (with n ~ 5,
n oF 6), I] and 14 , For instance, we conjecture that the basic example treated
in Proposition 6.1, K(x,y)=e n for (X,y)EIR 2

, is strictly totally positive
with respect to all finite reflection groups. If this conjecture is correct, one
desires a proof that is valid for all irreducible finite reflection groups.

The case of root systems of type H ~ is particularly intriguing. In this
case, the conjecture of total positivity of the function K( x, y) = en, x, y E IR,
reduces to an unknown inequality for the classical Bessel functions.

6.5. Root Systems of Type H,;, For n ~ 5, n oF 6, a root system of type
H~ is the set of vectors

{( in . in) . }L1 = cos -;;' Sill -;; :} = 0, I, ... , 2n - I .

A system of positive roots is

{ ( in. in) . }L1 + = e) = cos -;;' Sill -;; :} = 0, I, ... , n - I

a base for L1 is

{ ( (n - I) n . (n - I) n)}
'P = (l, 0), cos n ' Sill n

and a fundamental Weyl chamber for L1 is

{

2 (n-I)n. (n-I)n }
(£= (SI,S2)EIR :SI>O,S[cos +S2S111 >0 .

n n

A simpler formulation is obtained by identifying 1R2 with C and using polar
coordinates. Then we may identify L1 with the set of unit vectors, L1 =
{e}ni/,,: j = 0, I, ..., 2n - I}, and make analogous identifications for L1 + and
'P. The fundamental Weyl chamber is then identified with the set of vectors
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(£ = {reW
: r > 0, (n - 2) nl2n < B< n12} , and the reflection group W is

realized as the dihedral group (with n reflections) acting simply transitively
on the set of Weyl chambers.

Working in polar coordinates with s = r1 e iO
\ and t = r2 e ifh, C. Dunkl

pointed out to us that, after some elementary manipulations, the strict total
positivity of the function K( x, y) = eXY is equivalent to the inequality

OC (r r )2m x: (r r )j"I 1 \ I __1_.2__. sin(jnBd sin(jnO2) > ° (6.4 )
m ~ 0 m! 2 m j = 1 (m +In )! 2 J"

whenever r l , r 2 > °and 0< 01 , ()2 < nln. Setting r = r l r 2 /2, replacing OJ by
Bjn, j= I, 2, reversing the order of summation, and evaluating the sum
over m, then (6.4) reduces to the inequality

x

I Ij,,(r) sin(jO,) sin(j02) > °
j~ 1

(6.5)

for r > 0, B
"

B2 < n, where I,,(r) is the Bessel function of imaginary argu
ment. Applying a theorem of Fejer (cf. Askey [I, Theorem 1.2] or Gasper
[4, (1.15)]), we deduce that (6.5) is equivalent to the inequality

x:

I jlj,,(r) sinjB > °
j~ 1

(6.6)

for 0 < fJ < Jr, r> O. It is unknown whether (6.6) is valid for general n, but
Gasper has shown us how to prove it for n = 1,2 using classical formulas
for the Bessel functions. In any event (6.6) is valid for n = I, 2, 3, 4, 6 since,
for these values of n, the dihedral group is the Weyl group of a compact
Lie group, so that Theorem 6.1 applies.

7. AN FKG-TYPE INEQUALITY FOR SO(5)

In the introduction, it was noted that the classical theory of total
positivity plays a central role in the derivation of correlation inequalities on
IR". Of fundamental importance in this area is the FKG inequality which
is applied in quantum physics to the study of phase transitions; and in
multivariate statistics for the construction of confidence intervals and other
inferential tools. In this section, we prove an analogue of the classical FKG
inequality using the concept of total positivity with respect to the Weyl
group of SO( 5).

We first recall the classical FKG correlation inequality on IR"
(cf. [2,10,13]).
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7.1. DEFINITION. (i) For .\' = (Sl' ..., s,,) and t = (tl' ... , tIl) in IR", define
the lattice operations v and /\ by

•\' V t=(max(.\·" tIl, ... , max(s", tIl))' S /\ t = (min(s), t1), ... , min(s", t,,)) .

(ii) A function K: IR" ~ IR + is multivariate totally positive of order 2
( MTP2) if for all s, t E IR",

K(s) K(t) ~ K(s v t) K(s /\ t). (7.1 )

(iii) A function ¢>: [R;2 ~ [R; is increasing (decreasing) if ¢> is monotone
increasing (decreasing) in each component.

Note that for n=2, (7.1) reduces to the classical definition of TP 2 .

Further, it is well-known that a differential condition that characterizes the
positive MTP 2 functions is

a2

as,as
j

log K(s)? 0 (7.2)

K(II'o's) I
K( 11'0' (s /\ t)) .

for all i #- j [2, 10, 13].
The following result is the statement of the classical FKG inequality.

7,2, THEOREM [2,10,13]. Let K be a MTP2 probability densif.vfimction
on IR". If ¢/ 1R 2 ~ IR, j = 1, 2, are hoth increasing or decreasing, then

whenever the integrals exist.

To develop an SOl 5 )-analog of the FKG inequality, we first need to
define the concept of multivariate total positivity of order 2 with respect to
SO(5). For n? 2, we denote by 11'0 the reflection acting on IR" given by
11'0' (tl' t 2 , ... , til) = (~tl' t 2 , ... , til)'

7,3, DEFINITION, For n ? 2, a function K: 1R" ~ IR is MTP 2 lI'ith reJpect
to SO(5) if

05::IK(Svt) K(S)!_IK(II'Q.(svt)) K(lI'o'S)1
'"" K(t) K(s /\ t) K(t) K(s /\ t)

I
K(Svt) K(s) IIK(WQ,(SVt))

- K( w0 . t) K( II'0 . (s /\ t)) K( w0 . t)

(7.4 )
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Then the FKG inequality for SOl 5) is as follows.
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7.4. THEOREM. Suppose that the function K: 1R" --+ IR is MTP2 with
re.lpect to SO(5). Assume that L(s)=K(s)-K(H'o'S) is integrable (or
without loss of generality, a probability density fimction) on the set § =

{ 01' E 1R": K( s) ~ K( H' 0 ••1') }. If 1>/ 1R" --+ IR, j = I, 2, are hoth increasing or
decreasing on § then

whenever the integrals converge.

Proof: On expanding the determinants in (7.4) and collecting terms, we
find that (7.4) holds if and only if the function L(s) satisfies the classical
FKG condition (7.1); that is,

L(s) L( t) ~ L(s v t) L(s 1\ t)

for all s, t E IR". Therefore, (7.5) follows from Theorem 7.2.

7.5. EXAMPLE. Let n = 2, 0 < p ~ I and

K(x, y) = ~ exp( - Kx2+y2) + pxy)

for (x, y) E 1R 2. The function K is a constant multiple of the bivariate nor
mal probability density function with mean (0, 0) and covariance matrix

'\ =( I -P)
L. _p I .

Then

L(x, y) = exp( - ~(X2 +y2)) sinh( pxy)

so that § = {(x, y): xy > O}. Clearly, L is integrable on §. After normaliza
tion of L, the FKG inequality (7.5) holds once it has been proved that L,
equivalently the function sinh(pxy), is MTP2 on §. Without loss of
generality, we take p = I. To determine the subset of § on which the func
tion sinh( xy) is MTP2' we apply the differential condition (7.2). Since

. h O a2
I .hI. h ')SIn ~(xy)-~-- ogsm (xy)= --(2xJ'-sm (_xy))~O

ox oy 2

for xy > 0, then it follows that L is MTP 2 on all of §.
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We can also obtain an analog of the Holley-Preston-Kemperman
inequality [13, Theorem 2.2].

7.6. THEOREM. Let K" K 2 be fimctions on IRn, n ~ 2, such that

o~ IK2(S v t) Kt(s) I_I K 2(w O ' (s v t)) Kt(wo' .1')1

K 2(t) K,(s /\ t) K2(t) Kt(s /\ t)

I
Ko(Svt) K,(s) IIK2(W O .(svt)) K,(It·o'S) '

- K 2(It'o' t) KJ(w o' (.I' /\ t)) + K2(w O ' t) KJ(It·o · (.I' /\ t)) .

(7.6)

Let Lj (s)=Kj (s)-Kj (wo·s),j=I,2, §={sEIR":Lj (s»O,j=1,2}, and
assume that L, and L 2 are probability density functions on §. Then for any
increasing limction if! on §,

Similar to the proof of Theorem 7.4, Theorem 7.6 is proved by noting
that (7.6) is equivalent to

L 2(s v t) Lt(s /\ t) - L 2(1) Lj(s) ~ 0

for .1', t E IR n
, and then applying [13, Theorem 2.2].
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